Accelerated Formation of β -Dicalcium Silicate by Solid-state Reaction in Water Vapor Atmosphere

Takahiro Kozawa, Ayumu Onda, and Kazumichi Yanagisawa*

Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520

(Received February 2, 2009; CL-090113; E-mail: yanagi@kochi-u.ac.jp)

 β -Ca₂SiO₄ powders were prepared from commercially available raw materials, CaCO₃ and amorphous SiO₂ (*a*-SiO₂), by solid-state reactions in water vapor atmosphere. The formation of β -Ca₂SiO₄ was accelerated by water vapor. Water vapor is considered to enhance the thermal decomposition of CaCO₃ and to attack surface Si–O–Si bonds in *a*-SiO₂ to accelerate the formation of β -Ca₂SiO₄. The effect of water vapor atmosphere on the formation of β -Ca₂SiO₄ from a mixture of CaCO₃ and *a*-SiO₂ was stronger than that of mechanochemical processing for 30 min.

Dicalcium silicate (Ca₂SiO₄) is a major component of Portland cement. Recently, Ca₂SiO₄ is reported to be a potential candidate for new biomaterials for hard tissue repair because of its excellent bioactivity.^{1–3} Ca₂SiO₄ powders are conventionally prepared by solid-state reactions of CaCO₃ and SiO₂. However, the high calcination temperature generally required by solid-state reactions leads to many disadvantages such as large particle size, wide size distribution and high degree of particle agglomeration. In order to overcome the disadvantage of solid-state reactions, mechanochemical effects are known to be quite effective to reduce the calcination temperatures for solid-state reactions.⁴

On the other hand, it has been shown that thermal decomposition of CaCO₃ is accelerated by water vapor.^{5,6} It is expected that enhanced thermal decomposition of CaCO₃ would accelerate the formation of Ca₂SiO₄ by solid-state reactions with SiO₂ in water vapor atmosphere. In addition, the decrease of calcination temperatures would give fine Ca₂SiO₄ powders. In this paper, the influence of water vapor on the formation of Ca₂SiO₄ and on its powder properties was investigated by solid-state reactions of CaCO₃ and amorphous SiO₂ (*a*-SiO₂) in air and water vapor atmosphere. Furthermore, we also observed the mechanochemical effects for the solid-state reactions in both atmospheres.

The starting mixed powder of CaCO₃ ($d_{BET} = 0.40 \,\mu$ m) and a-SiO₂ with Ca/Si molar ratio of 2 was prepared by dry mixing in a stainless ball mill for 6 h at 280 rpm. The starting mixed powder was heated at a rate of 25 °C min⁻¹ and calcined at various temperatures for 2 h in air and water vapor atmosphere by a tubular furnace equipped with a water evaporator. Distilled water was introduced at a flow rate of 2 mL min⁻¹ into the evaporator to generate water vapor atmosphere in the furnace. Characterization of the calcined powders was conducted by powder X-ray diffraction (XRD, Rigaku Rotaflex RAD-RC), specific surface area measurement (S_{BET} , Yuasa-ionics NOVA-1200) and particle size distribution measurement (PSD, Shimadzu SALD-2200).

Figure 1 shows the XRD patterns of the samples obtained by calcinations at 600–800 $^{\circ}$ C for 2 h in air and water vapor atmosphere. In air atmosphere, CaCO₃ remained in large quantities

Figure 1. XRD patterns of the samples obtained by calcinations at 600–800 °C for 2 h in (a) air and (b) water vapor atmosphere.

up to 700 °C and CaO was detected up to 750 °C. Although the formation of β -Ca₂SiO₄ already began at 600 °C, high calcination temperature (800 °C) was required to get single β -Ca₂SiO₄ phase in air in 2 h. In contrast, the solid-state reactions of CaCO₃ and *a*-SiO₂ were accelerated by the injection of water vapor, and single-phase β -Ca₂SiO₄ was obtained at 650 °C in 2 h. CaCO₃ was completely decomposed at 650 °C to form β -Ca₂SiO₄ without formation of CaO. Water vapor is considered to enhance the thermal decomposition of CaCO₃ and the formation of β -Ca₂SiO₄ at lower temperatures.

We also investigated the solid-state reactions using a starting mixture prepared by planetary ball milling. Mechanochemical processing for the starting material was conducted for 30 min by planetary ball milling (Fritsch Pulverisette 5) with disc rotation speed of 200 rpm using agate vials and balls. Figure 2 shows the XRD patterns of the samples obtained by calcinations at 600-800 °C for 2 h in air and water vapor atmosphere. The thermal decomposition of CaCO₃ in air was promoted and completed at 700 °C by mechanochemical processing, probably because of the decrease of the particle size of CaCO₃. Nevertheless, 800 °C was required to get single β -Ca₂SiO₄ phase in air, in the same manner as the calcination of the starting mixture without mechanochemical processing. In water vapor atmosphere, the reaction was completed at 650 °C, at which single β -Ca₂SiO₄ phase was obtained from the mixture without mechanochemical processing. Thus, significant effects by planetary ball milling were not observed, because a-SiO₂ was too fine to get the effect of mechanochemical processing. It is concluded that the effect of water vapor atmosphere on the formation of β -Ca₂SiO₄ by solid-state reactions of CaCO₃ and *a*-SiO₂ is more effective than that of mechanochemical processing for 30 min.

Figure 2. XRD patterns of the samples obtained by calcinations at 600-800 °C for 2 h in (a) air and (b) water vapor atmosphere using planetary ball milling mixtures.

Figure 3. Specific surface area of the β -Ca₂SiO₄ powders obtained by calcinations at 650–1000 °C for 2 h in air and water vapor atmosphere using simple and planetary ball milling mixtures.

Figure 3 shows the S_{BET} of β -Ca₂SiO₄ powders prepared by calcinations for 2 h. By using planetary ball milling mixtures, β -Ca₂SiO₄ powders with high S_{BET} in comparison with that obtained from the simple ball milling mixtures were prepared in both atmospheres. Table 1 shows the powder properties of single β -Ca₂SiO₄ phase. The particle size was estimated from S_{BET} (d_{BET}) and PSD measurement (d_{50}) (Supporting Information).⁷ The span of PSD, defined as ($d_{90} - d_{10}$)/ d_{50} , shows the order of size distribution. β -Ca₂SiO₄ powders with smaller particle size (d_{50}) were prepared at lower temperatures in water vapor atmosphere from both starting mixtures, in comparison with those obtained in air. In addition, the calcination in water vapor atmosphere gave the powders with the same or narrow particle size distribution compared that in air.

Wang and Thomson⁶ regarded that water vapor adsorbed on CaCO₃ weakened CaO–CO₂ bonds and that the thermal decomposition of CaCO₃ was accelerated by water vapor. In addition, Hayashi et al.⁸ showed that calcinations in water vapor atmos-

Table 1. Powder properties of the β -Ca₂SiO₄ powders obtained by calcinations for 2 h

Calcination conditions	Starting mixtures	$d_{\rm BET}/\mu m$	$d_{50}/\mu m$ (Span of PSD)
800 °C in air	Simple	0.14	0.77 (2.7)
650 °C in water vapor	Simple	0.14	0.67 (3.1)
800 °C in air	Planetary	0.10	0.73 (5.9)
650°C in water vapor	Planetary	0.11	0.63 (3.0)

phere accelerated the crystallization of amorphous silicate precursors prepared by coprecipitation and considered that water vapor attacked surface Si–O–Si bonds in *a*-SiO₂ to cause the powder active state. In this study, synergistic effects in water vapor atmosphere are expected for decomposition of CaCO₃ and formation of β -Ca₂SiO₄. The accelerated formation mechanism of β -Ca₂SiO₄ in water vapor atmosphere is considered as follows: Water vapor attacks Si–O–Si bonds in *a*-SiO₂ and generates Si–OH bonds to promote rotation and movement of SiO₄ tetrahedra. Ca²⁺ ions which have already formed by accelerated decomposition of CaCO₃ in water vapor atmosphere easily react with SiO₄ tetrahedra. The formed hydroxy groups are eliminated by the rearrangement of SiO₄ tetrahedra to the nesosilicate structure of β -Ca₂SiO₄.

In summary, the solid-state preparation of β -Ca₂SiO₄ from commercially available raw materials, CaCO₃ and *a*-SiO₂, was accelerated by water vapor. β -Ca₂SiO₄ powders with the smaller particle size than that obtained in air were prepared by calcinations in water vapor atmosphere at lower temperatures than in air. Planetary ball milling of the starting material for 30 min had effects to decrease the particle size of the products but not to decrease the calcination temperature to complete the reactions. The solid-state reactions in water vapor atmosphere should be effective to prepare other ceramic powders consisting of oxygen polyhedra at low temperatures.

The authors would like to thank Prof. H. Ishizuka of Kochi University for his help in planetary ball mill experiments and Dr. T. Kono of Kochi Prefectural Industrial Technology Center for his help in particle size distribution measurements.

References and Notes

- D. Lamy, A. C. Pierre, R. B. Heimann, J. Mater. Res. 1996, 11, 680.
- 2 X. Liu, S. Tao, C. Ding, Biomaterials 2002, 23, 963.
- 3 Z. Gou, J. Chang, J. Eur. Ceram. Soc. 2004, 24, 93.
- 4 a) Y. Yokogawa, M. Toriyama, Y. Kawamoto, T. Suzuki, K. Nishizawa, F. Nagata, M. R. Mucalo, *Chem. Lett.* **1996**, 91. b) R. Yanagawa, M. Senna, C. Ando, H. Chazono, H. Kishi, *J. Am. Ceram. Soc.* **2007**, *90*, 809. c) L. B. Kong, J. Ma, H. Huang, R. F. Zhang, W. X. Que, *J. Alloys Compd.* **2002**, *337*, 226. d) O. Abe, *J. Soc. Inorg. Mater. Jpn.* **2008**, *15*, 3.
- 5 a) W. H. MacIntire, T. B. Stansel, *Ind. Eng. Chem.* 1953, 45, 1548.
 b) A. K. Burnham, C. T. Stubblefield, J. H. Campbell, *Fuel* 1980, 59, 871. c) J. Agnew, E. Hampartsoumian, J. M. Jones, W. Nimmo, *Fuel* 2000, 79, 1515.
- 6 Y. Wang, W. J. Thomson, Chem. Eng. Sci. 1995, 50, 1373.
- 7 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.
- 8 S. Hayashi, K. Ishizu, S. Kikuchi, K. Okada, N. Otsuka, J. Eur. Ceram. Soc. 1995, 15, 521.